
© ICT 2006, www.ict.org, All Rights Reserved

STUDENT LESSON

A8 – Control Structures if, if-else, switch

Java Curriculum for AP Computer Science, Student Lesson A8 1

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

STUDENT LESSON

A8 – Control Structures
if, if-else, switch

INTRODUCTION: Any sort of complex program must have some ability to control flow. Without

this control, programs become limited to one basic job each time the program is
run. The most basic of these control structures is the if statement, followed by
the if-else, and then the switch statement.

The key topics for this lesson are:

A. Structured Programming
B. Control Structures
C. Algorithm Development and Pseudocode
D. Relational Operators
E. Logical Operators
F. Precedence and Associativity of Operators
G. The if-else Statements
H. Compound Statements
I. Nested if-else Statements
J. Conditional Operator
K. Boolean Identifiers
L. Switch Statements (Optional)

VOCABULARY: ALGORITHM BOOLEAN IDENTIFIER

COMPOUND STATEMENT CONDITIONAL OPERATOR
CONTROL STRUCTURE IF-ELSE

 ITERATION LOGICAL OPERATOR
 PSEUDOCODE RELATIONAL OPERATOR

 STEPWISE REFINEMENT STRUCTURED PROGRAMMING

DISCUSSION: A. Structured Programming

1. In the early days of programming (1960's), the approach to writing software

was relatively primitive and ineffective. Much of the code was written with
goto statements that transferred program control to another line in the code.
Tracing this type of code was an exercise in jumping from one spot to
another, leaving behind a trail of lines similar to spaghetti. The term
"spaghetti code" comes from trying to trace code linked together with goto
statements. The complexity this added to code led to the development of
structured programming.

Java Curriculum for AP Computer Science, Student Lesson A8 2

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

2. The research of Bohm and Jacopini1 has led to the rules of structured
programming. Here are five tenets of structured programming.

a. No goto statements are to be used in writing code.
b. All programs can be written in terms of three control structures:

sequence, selection, and iteration.
c. Each control structure has one entrance point and one exit point. We will

sometimes allow for multiple exit points from a control structure using
the break statement.

d. Control structures may be stacked (sequenced) one after the other.
e. Control structures may be nested inside other control structures.

3. The control structures of Java encourage structured programming. Staying

within the guidelines of structured programming has led to great productivity
gains in the field of software engineering.

B. Control Structures

1. There are only three necessary control structures needed to write programs:

sequence, selection, and iteration.

2. Sequence refers to the line-by-line execution as used in your programs so far.

The program enters the sequence, does each step, and exits the sequence.
This allows for sequences to do only a limited job during each execution.

3. Selection is the control structure that allows choice among different paths.

Java provides different levels of selection:

• One-way selection with an if structure
• Two-way selection with an if-else structure
• Multiple selection with a switch structure

4. Iteration refers to looping. Java provides three loop structures. These will be

discussed in length in Student Lesson A12.

 • while loops
 • do-while loops
 • for loops

C. Algorithm Development and Pseudocode

1. An algorithm is a solution to a problem. Computer scientists are in the

problem-solving business. They use techniques of structured programming
to develop solutions to problems. Algorithms will range from the easier
"finding the average of two numbers" to the more difficult "visiting all the
subdirectories on a hard disk, searching for a file."

1 Bohm, C., and G. Jacopini, "Flow Diagrams, Turing Machines, and Languages with Only Two Formation Rules,

"Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371."

Java Curriculum for AP Computer Science, Student Lesson A8 3

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

2. A major task of the implementation stage is the conversion of rough designs

into refined algorithms that can then be coded in the implementation
language of choice.

3. Pseudocode refers to a rough-draft outline of an answer, written in English-

like terms. These generally use phrases and words that are close to
programming languages, but avoid using any specific language syntax. Once
the pseudocode has been developed, translation into code occurs more easily
than if we had skipped this pseudocode stage.

4. Stepwise refinement is the process of gradually developing a more detailed

description of an algorithm. Problem solving in computer science involves
overall development of the sections of a program, expanding each section
with more detail, later working out the individual steps of an algorithm using
pseudocode, and then finally writing a code solution.

D. Relational Operators

1. A relational operator is a binary operator that compares two values. The

following symbols are used in Java as relational operators:

 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
 == equal to
 != not equal to

2. A relational operator is used to compare two values, resulting in a relational

expression. For example:

number > 16 grade == 'F' passing >= 60

3. The result of a relational expression is a boolean value of either true or
false.

4. When character data is compared, the ASCII code values are used to

determine the answer. The following expressions result in the answers
given:

'A' < 'B' evaluates as true, (65 < 66)
'd' < 'a' evaluates as false, (100 < 97)
't' < 'X' evaluates as false, (116 < 88)

 In the last example, you must remember that upper case letters come first in

the ASCII collating sequence; the lower case letters follow after and
consequently have larger ASCII values than do upper case ('A' = 65, 'a' = 97).

Java Curriculum for AP Computer Science, Student Lesson A8 4

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

E. Logical Operators

1. The three logical operators in the AP subset are AND, OR, and NOT. These
operators are represented by the following symbols in Java:

 AND &&
 OR || (two vertical bars)
 NOT !

These logical operators allow us to combine conditions. For example, if a
dog is gray and weighs less than 15 pounds it is the perfect lap dog.

2. The && (and) operator requires both operands (values) to be true for the result

to be true.

 (true && true) -> true
 (true && false) -> false
 (false && true) -> false
 (false && false) -> false

3. The following are Java examples of using the && (and) operator.

 ((2 < 3) && (3.5 > 3.0)) -> true
 ((1 == 0) && (2 != 3)) -> false

 The && operator performs short-circuit evaluation in Java. If the first

operand in && statement is false, the operator immediately returns false
without evaluating the second half.

4. The || (or) operator requires only one operand (value) to be true for the

result to be true.

 (true || true) -> true
 (true || false) -> true
 (false || true) -> true
 (false || false) -> false

5. The following is a Java example of using the || (or) operator.

 ((2+3 < 10) || (19 > 21)) -> true

 The || operator also performs short-circuit evaluation in Java. If the first

half of an || statement is true, the operator immediately returns true without
evaluating the second half.

6. The ! operator is a unary operator that changes a boolean value to its

opposite.

 (! false == true) -> true
 (! true == false) -> true
 (! true == true) -> false

Java Curriculum for AP Computer Science, Student Lesson A8 5

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

 !(2 < 3) -> false

F. Precedence and Associativity of Operators

1. Introducing two new sets of operators (relational and logical) adds to the

complexity of operator precedence in Java. An abbreviated precedence chart
is included here.

Operator Associativity

! unary - ++ -- right to left
* / % left to right
+ - left to right
< <= > >= left to right
== != left to right
&& (and) left to right
|| (or) left to right
= += -= *= /= right to left

Table 8-1 Precedence and Associativity of Operators

2. Because the logical operators have low precedence in Java, parentheses are

not needed to maintain the correct order of solving problems. However, they
can be used to make complex expressions more readable.

 ((2 + 3 < 10) && (75 % 12 != 12)) // easier to read
 (2 + 3 < 10 && 75 % 12 != 12) // harder to read

G. The if-else Statements

1. The general syntax of the if statement is as follows:

if (expression){
 statement1;
}

 If the expression evaluates to true, statement1 is executed. If expression is
false then nothing is executed and the program execution picks up after the
ending curly brace (}). The following diagram shows the flow of control:

2. To provide for two-way selection an if statement may add an else option.

if (expression){

Java Curriculum for AP Computer Science, Student Lesson A8 6

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

 statement1;
}else{
 statement2;
}

 If the expression evaluates to true, the statement is executed. In an if-else
statement, if the expression is false then statement2 would be executed. The
following flowchart illustrates the flow of control.

3. The expression being tested must always be placed in parentheses. This is a

common source of syntax errors.

H. Compound Statements

1. The statement executed in a control structure can be a block of statements,

grouped together into a single compound statement.

2. A compound statement is created by enclosing any number of single
statements by braces as shown in the following example:

if (expression){
 statement1;
 statement2;
 statement3;
}else{
 statement4;
 statement5;
 statement6;
}

I. Nested if-else Statements

1. The statement inside of an if or else option can be another if-else

statement. Placing an if-else inside another is known as nested if-else
constructions. For example:

if (expression1){
 if (expression2){

Java Curriculum for AP Computer Science, Student Lesson A8 7

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

 statement1;
 }else{
 statement2;
 }
}else{
 statement3;
}

2. Here, your braces will need to be correct to ensure that the ifs and elses get
paired with their partners.

3. The above example has three possible different outcomes as shown in the

following chart:

 expression 1 expression2 statement executed

 true true statement1
 true false statement2
 false not tested statement3

4. Technically, braces are not needed for if and if-else structures if you only

want one statement to execute. However, caution must be shown when using
else statements inside of nested if-else structures. For example:

if (expression1)
 if (expression2)
 statement1;
else
 statement2;

 Indentation is ignored by the compiler, hence it will pair the else statement
with the inner if. If you want the else to get paired with the outer if as the
indentation indicates, you need to add braces:

if (expression1){
 if (expression2)
 statement1;
}else
 statement2;

 The braces allow the else statement to be paired with the outer if.

Important Concept However, if you always use braces when writing if and if-else statements,
you will never have this problem.

5. Another alternative to the example in Section 4 makes use of the && operator.

A pair of nested if statements can be coded as a single compound &&
statement. Both of these blocks of code would have the exact same effect,
but the second one is slightly easier to read.

if(expression1){
 if(expression2){
 statement1;

 }
}

//or...

Java Curriculum for AP Computer Science, Student Lesson A8 8

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

if (expression1 && expression2){
 statement1;
}

The second block of code makes the conditions clearer to another
programmer.

6. Consider the following example of determining the type of triangle given the

three sides A, B, and C.

if ((A == B) && (B == C))
 System.out.println("Equilateral triangle");
else if ((A == B) || (B == C) || (A == C))
 System.out.println("Isosceles triangle");
else
 System.out.println("Scalene triangle");

 If an equilateral triangle is encountered, the rest of the code is ignored. This
 can help to reduce the execution time of a program.

J. Conditional Operator (optional)

1. Java provides an alternate method of coding an if-else statement using the

conditional operator. This operator is the only ternary operator in Java, as it
requires three operands. The general syntax is:

 (condition) ? statement1 : statement2;

2. If the condition is true, statement1 is executed. If the condition is false,

statement2 is executed.

3. This is appropriate in situations where the conditions and statements are

fairly compact.

int max(int a, int b){ // returns the larger of two integers
 (a > b) ? return a : return b;
}

K. Boolean Identifiers

1. The execution of if-else statements depends on the value of the Boolean

expression. We can use boolean variables to write code that is easier to
read.

2. For example, the boolean variable done could be used to write code that

reads more like English.

 Instead of

if(done == true){
 System.out.println("We are done!");

Java Curriculum for AP Computer Science, Student Lesson A8 9

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

}

we can write

if(done){
 System.out.println("We are done!");
}

3. Programmers often use boolean variables to aid in program flow and

readability. The second version is the more preferred way of using a
boolean variable in this situation because it is less dangerous. If you make
a mistake and only put = instead of == Java will not catch that and interprets
the statement as assignment. Some strange results could occur and it can
take the programmer a while to catch the error.

L. Switch Statements (optional)

1. Consider a simple user menu for a store simulation program. There should

be options to buy certain items, check your total money spent, cancel items
selected, exit, and finish and pay. We could take the input from this menu
and do a complicated, nested series of if-else statements, but that would
quickly become bulky and difficult to read. However, there is an easy way to
handle such data input with a switch statement. Depending on which
command is chosen, the program will select one direction out of many. The
AP exam does not test on the switch statement, but we include it here at
the end of this chapter because it is a very useful tool to have in your
programming toolkit.

2. The general form of a switch statement is:

switch (expression){
 case value1:
 statement1;
 statement2;
 ...
 break;
 case value2:
 statement3;
 statement4;
 ...
 break;
 case valuen: //any number of case statement may be used
 statement;
 statement;
 break;
 default:
 statement;
 statement;
 break;
} /* end of switch statement */

3. The flow of control of a switch statement is illustrated in this diagram:

Java Curriculum for AP Computer Science, Student Lesson A8 10

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

4. The switch statement attempts to match the integer value of the expression

with one of the case values.

5. If a match occurs, then all statements past the case value are executed until a

break statement is encountered.

6. The effect of the break statement causes program control to jump to the end

of the switch statement. No other cases are executed.

7. A very common error when coding a switch control structure is forgetting

to include the break statements to terminate each case value. If the break
statement is omitted, all the statements following the matching case value
are executed. This is usually very undesirable.

8. If it is possible that none of the case statements will be true, you can add a

default statement at the end of the switch. This will only execute if none
of the case statements happened. If all possibilities are covered in your case
statements, the default statement is unnecessary. Note that the default
statement can actually be placed anywhere. If you place the default in the
beginning or middle of the switch, you will probably want to end the

Java Curriculum for AP Computer Science, Student Lesson A8 11

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

default case with a break. Otherwise, execution will continue with the
case after the default.

int i = 4;
switch (i) {
 case 1: System.out.println(“Apple”); break;
 default: System.out.println(“Orange”);
 case 2: System.out.println(“Banana”); break;
}

Orange
Banana

9. The following example applies the switch statement to printing the work

day of the week corresponding to a value. We pass in the integer day:

switch (day){
 case 1: System.out.println ("Monday"); break;
 case 2: System.out.println ("Tuesday"); break;
 case 3: System.out.println ("Wednesday"); break;
 case 4: System.out.println ("Thursday"); break;
 case 5: System.out.println ("Friday"); break;
 default: System.out.println ("not a valid day"); break;
}

10. Suppose we wanted to count the occurrences of vowels and consonants in a

stream of text.

if (('a' <= letter) && (letter <= 'z')){
 switch (letter){
 case 'a' : case 'e' : case 'i' : case 'o' : case 'u' :
 vowel++;
 break;
 default :
 consonant++;
 break;
 }
}

a. Note that multiple case values can lead to one set of statements.
b. It is good programming practice to include a break statement at

the end of the switch structure. If you need to go back and add
another case statement at the end of the switch structure, a
break statement already terminates the previous case statement
and there is no chance that you might forget to add a break
statement.

11. There are programming situations where the switch statement should not
replace an if-else chain. If the value being compared must fit in a range
of values, the if-else statement should be used.

if(score >= 90 && score <= 100){
 grade = 'A';
}else if{(score >= 80 && score < 90)
 grade = 'B';
}else if{(score >= 70 && score < 80)
 grade = 'C';

Java Curriculum for AP Computer Science, Student Lesson A8 12

© ICT 2006, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance with license terms (http://www.ict.org/javalicense.pdf)

}

etc...

You should not replace the above structure with a switch statement.

12. Finally, the switch statement cannot compare double values.

SUMMARY/
REVIEW:

Control structures are a fundamental part of Java. You will need to practice
control structures in Java to become familiar with what types of situations they
are useful in. Also, Boolean expressions are very useful and should be used
whenever appropriate to make coding easier.

ASSIGNMENT: Lab Assignment A8.1, CheckMail
 Lab Assignment A8.2, IRS

